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Motivation: Advanced Propulsion Algorithms

 Safety and performance goals for next-gen aircraft have driven the 
development of increasingly advanced engine control and health management 
algorithms:

• Intelligent and autonomous

• Adaptive, onboard learning, self-tuning and reconfigurable

 Potential to enable:

• Increased performance

• Autonomous adaptation to accommodate:

– Damage and wear

– Hardware faults (sensors & effectors)

– Uncertain environmental conditions

 Emerging approach at NASA and industry partners: 

• Real-time onboard models

– Enable estimation of unmeasured engine parameters

– Enable estimation-based control

– Facilitate onboard diagnostic 
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Motivation: Certification Challenge

 Deployment of advanced algorithms require certification to 
achieve high confidence in their safety. 
• Becoming increasingly difficult and cost-prohibitive using current 

verification & validation (V&V) practices

• Complete V&V at design-time for some algorithms may not be 
feasible

– Non-determinism or complexity preclude exhaustive testing

– As a result, complete coverage cannot be achieved

 Problem being addressed
• Advancements in design-time analysis (formal methods) to provide 

mathematical proof of the safe execution of highly complex systems. 

• Advancements in run-time verification – using monitors to observe 
execution of uncertified algorithms to insure system behavior remains 
constrained within acceptable bounds of stability.
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Run-Time Verification
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Run-Time Verification Overview

 An analysis approach from computer science
• Monitors observe execution of a running system (i.e. software program) to 

detect whether behavior satisfies or violates correctness properties.

• Used to augment design-time model checking of high-level language programs.

 Application of run-time monitoring to real-time software. 
• Real-time execution enables (upon detection of property violation):

– Remedial action (e.g. provide an alert, influence subsequent execution) or

– Enforcement of an expected behavior to avoid violations.

 Recent research investigates application to:
• Verification of embedded systems  (tightly coupled software/hardware)

• Safety-critical systems

• Run-time assurance of flight-critical system 

• NASA interest in run-time assurance for advanced engine algorithms
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Run-Time Assurance Framework

 Primary System (Advanced)
• Advanced controller responsible for achieving performance objectives

• Intelligent, reconfigurable, learning, adaptive, non-deterministic, etc.

• Enabled at all times under nominal conditions

• Difficult or costly to fully certify at design time
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Run-Time Assurance Framework

 Backup System (Fail-Safe)
• Simplified control system with emphasis on safety rather than performance

• Does not possess advanced elements that cannot be certified

• Certified at design-time using traditional methods
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Run-Time Assurance Framework

 RTA Monitor & Transition Control 
• Continually monitor overall state of the system 

• Compare against validated representation of safe operating envelope

• If violation occurs, Transition Controller disables Advanced System and 
transfers control to Backup System

• Must be certified at design time

10

Primary
System

RTA
Monitor

Backup
System

PlantTransition
Control



National Aeronautics and Space Administration

RTA Implementation Issues

 What should be monitored?
• All states & critical parameters that affect safety of the system

– Safety limits (structural limits, component limits)

– Operational limits

– Performance limits

 How should the switching conditions be defined?
• When should the switch be activated?  How much margin needed?

– Switch too late – safety could be compromised

– Switch too early – performance of advanced system could be limited 
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Case Study: Model-Based Engine Control
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Case Study: Model-Based Engine Control

 Investigate application of RTA approach to GRC’s Model-Based Engine Control
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RTA Integrated with Engine Control

 Integrated in a simulation platform under MATLAB/Simulink

 RTA outputs inRAE flag to select control mode

• inRAE = 1 =>  true => no parameter has violated its limit

• inRAE = 0 =>  false => at least one parameter has violated its limit

 Transition Control performs simple switching between the advanced thrust 
based controller and the backup EPR controller

 Switching the type of stall margin limiter
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Monitored States

 Defining Safety Boundaries 
for this initial study
• Monitored well-understood 

engine safety & operational 
limits

• Monitored analytical 
parameters: Kalman filter 
residuals to assess  
performance
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Limited Parameter Value

Safety and Operational Limits

Fan Speed (Nf) max = 4200 rpm

Core Speed (Nc) max=12200 rpm

HPC discharge pressure (Ps3) max = 433 psi

HPC stall margin (smHPC) min = 8%

LPC stall margin (smLPC) min = 6%

RU limit min = 17%

Kalman Filter Residual Limits (% error)

Fan speed (Nf) max = 3%

Core speed (Nc) max = 3%

HPC discharge temperature (T30) max = 3%

LPT discharge temperature (T50) max = 3%

HPC discharge pressure (Ps3) max = 3%

LPT exit pressure (P50) max = 3%
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Experimental Results
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Nominal Experimental Results
 Nominal Take-off

• PLA increased: 43 to 80 deg. over 5 sec. Initial conditions: Mach 0, altitude 0 ft.

• RTA maintains operation with Model-based Engine Controller
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Nominal Experimental Results
 Nominal Cruise

• PLA increased: 60 to 70 deg. over 5 sec. Initial conditions: Mach 0.7, altitude 30K ft.

• RTA maintains operation with Model-based Engine Controller 
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 Seeded error within the OTKF

• Created sign errors in simulation 
(e.g.  Δy and DΔu terms)

• Result in:

– Incorrect estimates

– Poor performance

– Issues with protection logic

19

Induced OTKF Fault Experiment

 Operating conditions:

• Take-off profile

– PLA linearly increased: 43 to 80 deg. over 5 second period

– Initial conditions: Mach 0, altitude 0 ft.

• Cruise operating condition

– PLA linearly increased: 60 to 70 deg. over a 5 second period

– Initial conditions: Mach 0.7, altitude 30K ft.
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Induced OTKF Fault Experiment
 Seeded error: Δy coding error (sign error) introduced @ t = 20 sec during take-off

• RTA switches to EPR controller @ t = 22 sec  KF residuals exceed their limits

• Ps3 reaches safety limit. Protection Logic overrides controller
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Ps3 reach safety limit. 
Protection logic 
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Error initialized at t=20s
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 Seeded error: Δy coding error introduced @ t = 20 sec during cruise

• RTA switches to EPR controller @ t = 22 sec  KF residuals exceed their limits

• Alternating control from protection logic elements: RU min. limiter & HPC SM max. limiter
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Conclusion

 Provided motivation for pursuit of run-time assurance as a 
potential means to address certification barrier for advanced 
propulsion algorithms.

 An overview of run-time monitoring methods was presented.

 A case study was initiated to investigate the feasibility of 
RTA approach to propulsion control.

 An RTA framework was developed and integrated with 
NASA’s Model-Based Engine Control (MBEC) architecture

 Preliminary experiments and results.

22



National Aeronautics and Space Administration

23

Future Work

 Current: 

• Develop more robust transition logic to replace the simple 
switching. Ensure stable transition from the advanced 
controller to the backup controller.

• Investigate more sophisticated approaches to determination 
of safety envelope. In addition to current safety, operational 
& performance limits/conditions.

 Long-term: 

• Investigate a generalized RTA framework for propulsion 
control monitoring, assurance and assessment.

• Applicable to other advanced algorithms

• Scalable to a variety of propulsion types.

• Engage certification authorities to work towards acceptance 
of approach.
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